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a b s t r a c t

This study focused on the impact of noise on the reliability of heart-rate variability and complexity (HRV,
HRC) to discriminate between different trauma patients and to monitor individual patients. Life-saving
interventions (LSIs) were chosen as an endpoint because performance of LSIs is a critical aspect of trauma
patient care. Noise was modeled and simulated by modifying original R–R interval (RRI) sequences via
decimation, concatenation, and division of RRIs, as well as R-wave detection using the electrocardiogram.
Results showed that under increasing simulated noise, entropy and autocorrelation measures can still
effectively discriminate between LSI and non-LSI patients and monitor individuals over time.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Despite extensive studies in the past few decades [1–4] on the
significance and meaning of the many different measures of heart-
rate variability (HRV) and heart-rate complexity (HRC), few studies
exist to assess the influence of noise on these measures, and even
less, on measures for triage and treatment of trauma patients.
There is no doubt that noise plays an integral part in the clinical
environment, but to what extent it affects the measures of HRV
and HRC so as to misconstrue their meaning for clinical use and
patient diagnosis remains a profound and unanswered question.

HRV and HRC metrics are used to quantify beat-to-beat changes
in the R-to-R interval (RRI) of the electrocardiogram (ECG), and
therefore, reflect different physiological factors modulating normal
sinus rhythm [1–4]. Because the calculation of ECG-derived
metrics relies on accurate R-wave detection (RWD) as well as
ECG waveform data acquisition, a hurdle in using HRV and HRC as
new vital signs is that various noise and artifact types must be
accounted for at every stage prior to metric calculations. If HRV
and HRC indices become unreliable or uninformative due to noise
at any stage in the process, then use of these indices must be
avoided during patient assessment.

To define noise in a medical setting, however, is complex (and
sometimes, controversial), since ECGs, like other commonly monitored
physiological signals, are often corrupted by artifacts, missing data,
and noise that is non-Gaussian, non-linear, and non-stationarity [5].
In addition to electromechanical noise (motion artifacts), most ECGs
contain atypical phenomena, i.e., arrhythmic changes consistent with
illness, severe exsanguinations, and pre-terminal and terminal loss of
ECG morphology. Furthermore, RWD can be impeded by baseline
wander within the ECG as well as high frequency and electromyogram
noise and/or power-line interference [6–8]; other possible impedi-
ments include human interaction with patients, medical devices, ECG
leads, etc.

Because many potential sources can contribute to poor ECG signal
quality and RWD performance, noise was defined for this study at
the metric level rather than at the waveform and detection levels.
In other words, noise is any source that alters the true RRI sequence
of an ECG, and consequently, modifies calculation of an ECG-derived
metric, the “gold standard” being determined by manual verification
of the RRI sequence and subsequent metric calculations. This broad
definition includes missed beats, false detections, and missing data,
and thus, captures inherent weaknesses in existing RWD algorithms.
If the altered RRI sequence is considered to be the result of a
manually verified sequence having passed through some noisy
channel, then an additive noise model from signal processing theory
may best describe the above definition. This channel may be a
cascade of filters, such as decimation and threshold filters that
preclude specific intervals followed by interpolation filters that insert
extra RRIs into the original RRI sequence.

In view of recent work by Proctor et al. [9] reviewing clinical
application of HRV and HRC for triage and assessment of trauma
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patients, as well as Moorman et al. [10,11] and Seely et al. [12,13]
investigating the clinical use of HRV and HRC for detecting sepsis
and multiorgan failure, reliability of metric calculations may help
detect significant changes from baseline values earlier and more
accurately. Moreover, improved HRV and HRC calculations could
help improve trends over seconds, minutes, or even days and
identify crossed thresholds that would have otherwise been
missed due to noise and/or poor RWD performance. Consequently,
improved HRV and HRC accuracies could enhance clinical decision
making as well as decision support systems and patient care in the
areas mentioned above. Other applications which require mon-
itoring over time, such as mentioned in [9,14], could likewise
benefit from reliable HRV and HRC values.

This study focused on the impact of noise on the reliability of
HRV/HRC analysis in trauma patients, with life-saving interven-
tions (LSIs) as an endpoint, because effective and timely perfor-
mance of LSIs is a critical aspect of trauma patient care. The
purpose of this study was to investigate how simulated noise (i.e.,
artificial modifications of true RRI sequences) could potentially
affect selected measures of HRV and HRC in their usefulness for
discriminating between trauma patients who received at least one
LSI and those who received none, and in their usefulness for
monitoring trauma patients in real time. A hypothesis of this study
was that the calculation of certain metrics may be less susceptible
to noise, and therefore, may be integrated into a real-time soft-
ware program for decision support and triage in critically ill and
trauma patients.

2. Materials and methods

2.1. Patient data

This study was conducted under a protocol reviewed and
approved by the U.S. Army Medical Research and Materiel Command
Institutional Review Board, and in accordance with the approved
protocol. Following approval, 108 pre-hospital patient records were
selected from the U.S. Army Institute of Surgical Research Trauma
Vitals (TV) database based upon the availability of ECG waveform
data and manual verification of all RRI sequences. Because all data
were analyzed post hoc, the study was considered minimal risk, and
informed patient consent was waived.

Importantly, all ECGs were acquired at a sampling frequency of
375 Hz using aWelch Allyn PIC 50 (Welch Allyn, Skaneateles Falls, NY)
monitor and characterized the underlying heart rhythms of severe
trauma patients (Code 2/3) with blunt and penetrating injuries, who
were transported from the scene by helicopter service to a Level I
trauma center in Houston, TX or San Antonio, TX. Of these 108
waveforms, 82 ECGs (76%) belonged to patients who received at least
one LSI, while the remaining 26 ECGs (24%) belonged to patients who
received none. Waveform data were extracted by research personnel
and uploaded to the TV database for analysis using a personal digital
assistant attached to the monitor during transport. Lengths of patient
ECGs varied from approximately 15 to 20 min.

2.2. R–R interval computation

The “gold standard” for obtaining true RRI sequences was manual
verification of R waves, which was accomplished by importing ECG
waveform data into WinCPRS software (Absolute Aliens Oy, Turku,
Finland), visually analyzing the data, and marking times and posi-
tions of all R waves.

Because many previously published results of beat detection
algorithms against different databases (e.g., MIT–BIH Arrhythmia
Database) involved the detection of beats or QRS complexes, rather
than the detection of R-waves, these results may not reflect stringent

requirements on performance. In other words, beat detection algo-
rithms may not be accurate enough for the real-time calculation of
measures of HRV and HRC. Therefore, ECGs of patient records were
loaded into an in-house-developed real-time RWD software algo-
rithm [15] in order to produce detected RRI sequences. This software
algorithm was a data fusion algorithm that employs four individual
RWD algorithms to detect R waves in the ECG. Central to its fusion
scheme, the data fusion algorithm selects the mode RRI or the RRI
closest to a previous averaged decision within a given time frame.
A strict tolerance of 25 ms was used for classifying detected R waves
as true positives, since 25 ms corresponded to within 3% of an
average RRI of 750 ms (or a heart rate of 80 beats per minute).
Detected beats not satisfying this criterion were classified as false
positives; missed beats were classified as false negatives.

2.3. Noise modeling

Increasing levels of noise may mask acute changes in a trauma
patient's status. Because the methods for quantitatively measuring
the effects of noise on the reliability of HRV and HRC metrics are
still yet to be determined from a clinical standpoint, noise was
modeled and simulated using four techniques: (1) decimation of
an RRI sequence at selected multiples of the original sequence,
(2) concatenation of adjacent RRIs at selected multiples of the
original sequence, (3) division of RRIs into two RRIs at selected
multiples of the original sequence and (4) detection of an RRI
sequence using the ECG waveform. Selected multiples of the
original sequence denote only those Mth multiples of the true
RRI sequence, for M¼10, 9, …, 2. Hence, for every true original RRI
sequence, an additional 9þ9þ9þ1¼28 RRI sequences were
produced. In the case of (3), division of RRIs by two was only
performed when the resulting RRIs were each greater than 250
milliseconds in order to ensure that newly created beats did not
fall within a refractory period of 220 milliseconds.

Decimation was chosen to partially randomize a true sequence in
a controlled manner, thereby ensuring that newly formed sequences
could be related to the original sequence. It was also used to simulate
missing or dropped data. However, as this technique did not generate
sequences for an exhaustive analysis, concatenation of selected RRIs
was used to simulate missed beats and arrhythmias, while division of
selected RRIs was used to simulate ectopic beats, motion artifacts,
and arrhythmias. Therefore, increasing the value ofM meant increas-
ing the randomness, number of missed beats, or number of ectopic
beats and motion artifacts in a sequence, respectively. 1/M � 100
equaled the percentage that a true RRI sequence was affected by
simulated noise.

2.4. Analysis of heart-rate variability and complexity measures

For this study, nine metrics were selected based upon their
clinical relevance, frequent citations in the biomedical research

Table 1
Selected measures of heart-rate variability and
complexity.

Measure Notation

Sample entropy SampEn
Quadratic sample entropy QSE
Multiscale entropy MSE
Poincaré variability ratio SD1/SD2
Fractal scaling exponent α

Autocorrelation coefficient A(k, τ)
Degree of non-stationarity StatAv
Standard deviation SDRR
Successive differences SDSD

N.T. Liu et al. / Computers in Biology and Medicine 43 (2013) 1955–19641956



literature, and feasibility to implement in software (see Table 1).
To perform metric calculations, sliding windows of 200 RRIs were
employed for short-term variability analysis, and 800 RRIs, for long-
term variability analysis. Moreover, specific values of m¼2, r¼6, and

s¼4 were chosen based upon their performance over repeated
animal studies conducted at this Institute. Choice of window sizes
was governed by previous work involving heart-rate complexity in
trauma patients [16–18], which determined that sample entropy was
relatively unaffected by a decrease in number of RRIs (down to a data
set of 200 RRIs) whereas multiscale entropy still required a larger set
of 800 RRIs for reliable computation.

After obtaining all RRI sequences, metrics were calculated, and
mean values and standard deviations were obtained for LSI and
non-LSI patient groups. Normality was not assumed for mean
values across all records within each group due to the small
sample size. Therefore, means between groups were compared
using Wilcoxon (non-parametric) statistical tests for true RRI
sequences, modified RRI sequences, and detected RRI sequences.

To address how simulated noise could potentially affect the
ability of measures to discriminate between LSI and non-LSI
trauma patients, noise effects on relationships between mean
values across records corresponding to trauma patients who
received at least one LSI and those who received none were
assessed qualitatively by comparing the selected measures
obtained for true RRI sequences, modified RRI sequences, and
detected RRI sequences. Similarly, to address how simulated noise
could potentially affect the ability of measures to monitor trauma
patients in real time, noise effects on HRV and HRC values over
time for individual records were assessed qualitatively by analyz-
ing the selected measures as a function of time.

3. Results and discussion

The demographics of the 108 patients included in this study are
depicted in Table 2. Quartiles were established for age. Race and
age were not statistically different between those patients who
received at least one LSI and those who received none. Likewise,
increasing patient age did not increase the frequency of an LSI in
this sample/study. Of these 108 patients, 26 (24%) did not require
an LSI. The other 82 (76%) patients received a total of 142 LSIs. 61%
(87) of the LSIs were performed pre-hospital and 39% (55) in
the emergency room. Interventions consisted of the following:
73 endotracheal intubations, 30 transfusions, 18 tube thoracos-
tomies, 9 cardiopulmonary resuscitations, 8 needle decompressions,
1 angio-embolization, 2 cricothyrotomies, and 1 thoracotomy.
Importantly, the demographics of the chosen population included
heart rates ranging from 20 to 156 beats per minute, systolic blood
pressures ranging from 80 to 170 mm Hg, diastolic blood pressures
ranging from 44 to 110 mm Hg, and various types of injuries and
LSIs. This cohort provided the ECG morphology for challenging the
RWD algorithm as well as the RRI sequences for noise simulation
and analysis.

The performances of the RWD algorithm against all 108 records
and against records of individual groups are shown in Table 3.
Given the demographics in Table 2, the RWD algorithm achieved an
overall sensitivity of 91.8% and positive predictive value of 92.2%. A
comparison of sensitivity and positive predictive value between
individual groups indicated that performances were not statistically

Table 2
Demographics of selected patients from the trauma vitals database.

Variable All patients Patients with life-
saving interventions
(LSIs)

Number
of LSIs

Number
(N)

Percentage
(N/108)

Number
(n)

Percentage
(n/N)

All patients 108 100 82 76 142

Gender
Female 25 23 19 76 39
Male 82 76 62 76 102
Unknown 1 1 1 100 1

Race
White/Caucasian 44 41 31 70 58
Black 6 6 5 83 9
Hispanic 24 22 21 88 34
Asian/Pacific 3 3 3 100 6
Not recorded 31 28 22 71 35

Age
Mean 37714
Quartiles

18–24 25 23 21 84 35
25–35 29 27 23 79 38
36–45 27 25 17 63 27
46–83 27 25 21 78 42

Method of injury
Blunt 93 86 73 78 126
Penetrating 13 12 9 69 16
Unknown 2 2 0 0 0

Injury severity
Mean 17711
Quartiles

1–8 19 18 11 58 15
9–12 26 24 16 62 25
13–22 31 29 26 84 49
24–59 32 29 29 91 53

Systolic BPa

Mean 116723
Median 115.5

80–89 7 6 6 86 11
90–119 29 28 24 83 41
120–129 8 7 6 75 7
130–138 8 7 3 38 7
140–170 12 11 9 75 12
Unknown 44 41 34 77 64

Diastolic BPa

Mean 79716
Median 80

44–58 7 6 6 86 11
60–76 17 16 14 82 23
80–87 9 8 7 78 10
90–98 14 13 7 50 12
100–110 4 4 3 75 5
Unknown 57 53 45 79 81

Heart ratea

Mean 106727
Median 104

20–56 3 3 1 33 1
76–98 24 22 18 75 23
100–108 10 9 7 70 17
110–116 7 6 5 71 7
120–127 9 8 8 89 16
131–156 12 11 9 75 15
Unknown 43 41 34 79 63

BP, blood pressure (mm Hg); heart rate (beats per minute).
a Field entry values taken from the run sheet.

Table 3
Performance of R-wave detection against ECG records.

# Records # Beats TP FP FN Se (%) þP (%)

108 214,823 197,257 16,603 17,566 91.8 92.2
82 (LSI) 164,786 151,143 12,851 13,643 91.7 92.2
26 (NLSI) 50,037 46,114 3752 3923 92.2 92.5

TP, true positive; FP, false positive; FN, false negative; Se, sensitivity; þP, positive
predictive value; LSI, life-saving intervention; NLSI, non-life-saving intervention.

N.T. Liu et al. / Computers in Biology and Medicine 43 (2013) 1955–1964 1957



different and that resulting metrics could be compared without bias
in RWD performance. In addition, means of selected metrics,
standard deviations, and p-values obtained via Wilcoxon tests for

LSI and non-LSI patient groups are shown in Table 4. Sample entropy
(SampEn), quadratic sample entropy (QSE), and multiscale entropy
(MSE) values for patients who received at least one LSI were
consistent with the fact that this group often has lower HRC than
patients who did not receive any LSI [16–18]. Similarly, higher fractal
scaling exponent (α), autocorrelation coefficient [A(k, τ)], and degree
of non-stationarity (StatAv) values for the LSI patient group were
consistent with the fact that this group often has concomitant
illnesses [19–23]. Importantly, Table 4 demonstrated that given
RWD performances in Table 3, SampEn, QSE, MSE, and A(k, τ) could
still be used to discriminate between different populations. A further
implication was that calculation of these metrics could be useful for
risk stratification, when simulated noise via detection of an RRI
sequence from the ECG (i.e., actual RWD performance) exceeded
sensitivities and positive predictive values shown in Table 3.

Means of selected metrics for noise simulated via decimation,
concatenation, and division are shown in Figs. 1–3, respectively. In
each figure, red diamonds were associated with means of LSI
patients, whereas blue squares were associated with means of
non-LSI patients. Furthermore, the leftmost points of each plot
corresponded to means of true RRI sequences. Decreasing values

Table 4
Comparison of detection-derived mean values between patient groups.

Measure LSIa patients
(n¼82)

NLSIb patients
(n¼26)

p-value

Mean Std dev Mean Std dev

Sample entropy 0.833 0.303 1.108 0.351 0.002
Quadratic sample entropy 2.989 0.857 3.549 0.736 0.004
Multiscale entropy 0.546 0.427 0.975 0.553 0.001
Poincaré variability ratio 0.508 0.247 0.448 0.158 0.370
Fractal scaling exponent 0.963 0.196 0.897 0.151 0.101
Autocorrelation coefficient 0.112 0.080 0.063 0.046 0.004
Degree of non-stationarity 0.709 0.180 0.634 0.168 0.039
Standard deviation 45.806 60.646 40.399 25.712 0.309
Successive differences 44.520 70.281 35.661 31.291 0.454

a LSI denotes life-saving intervention.
b NLSI denotes non-LSI.

Fig. 1. Means of selected metrics for noise simulated via decimation and R-wave detection. To address how noise could potentially affect the ability of measures to
discriminate between LSI and non-LSI trauma patients, noise was simulated by decimating true RRI sequences at every ith multiple (Mi) for i¼10, 9, …, 2 and by detecting
RRI sequences using the ECG waveform. Afterwards, metrics were calculated for true RRI sequences (T), modified RRI sequences (M10, M9, M8, …, M2), and detected RRI
sequences (D). Mean values were then obtained for LSI and non-LSI patient groups. Decreasing values of M denoted increasing percentages of a true RRI sequence affected by
noise. Decimation was chosen to partially randomize a true sequence in a controlled manner, thereby ensuring that newly formed sequences could be related to the original
sequence. It was also used to simulate missing or dropped data. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of
this paper.)
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of M denoted increasing percentages of a true RRI sequence
affected by noise.

Although sequences corresponding to M2 and M3 in Fig. 1
produced means that deviated most from the true means, in
general, increasing simulated noise via decimation did not affect
relationships between means of patients groups. An exception was
for the Poincaré variability ratio (SD1/SD2) in Fig. 1, where mean
values were reversed at M2.The results in Fig. 1 suggested that for a
“lossy” data channel represented by simulated noise via decimation,
if the lossy rate was no more than 25% (i.e., between M9 and M4),
selected metrics other than SD1/SD2 in Table 1 could still be reliable
for discriminating between different trauma patient groups.

In Figs. 2 and 3, almost all means of modified RRI sequences
differed from true means by over 20%, and in some cases (e.g.,
SampEn, QSE, and MSE), distances between means of patient
groups differed from true distances by over 50%. For SD1/SD2
and α in Fig. 2, there was not a clear distinction between means of
patient groups corresponding to modified sequences. Moreover,
for the standard deviation of RRIs (SDRR) and standard deviation
of successive RRI differences (SDSD) in Figs. 2 and 3, mean values
were reversed at all Mi for i¼10, 9, …, 2. For SampEn under
simulated noise via concatenation in Fig. 2, relationships between

mean values were preserved. However, neither SampEn in Fig. 3 nor
MSE in Figs. 2 and 3 was able to preserve relationships completely.
(Consider MSE in Fig. 3 atM10.) Notably, in Figs. 2 and 3, QSE, A(k, τ),
and StatAv were able to reliably discriminate between LSI and non-
LSI patient groups.

Considering all noise models, then, results demonstrated the
overall effectiveness of QSE and A(k, τ) to stratify patients and
discriminate between different populations. In addition, results
indicated that an increasing presence of false positives (motion
artifacts, ectopic beats, and arrhythmias) and false negatives
(missed beats, arrhythmias) could not only distort the true means
of HRV and HRC metrics in Table 1 but also mask the ability of
metrics to discriminate reliably. Most vulnerable to these noise
effects were SDRR, SDSD, MSE, and SampEn.

Selected metrics as a function of time for noise simulated via
decimation, concatenation, and division are shown in Figs. 4–6,
respectively. The plotted sequences belonged to one patient
record. Longer sequences were associated with true RRI sequences,
while shorter sequences were associated with modified RRI
sequences. Decreasing values of M denoted increasing percentages
of a true RRI sequence affected by noise as well as decreas-
ing lengths of sequences. From a visual perspective, increasing

Fig. 2. Means of selected metrics for noise simulated via concatenation. To address how noise could potentially affect the ability of measures to discriminate between LSI and
non-LSI trauma patients, noise was simulated by concatenating adjacent RRIs of true RRI sequences at every ith multiple (Mi) for i¼10, 9, …, 2. Afterwards, metrics were
calculated for true RRI sequences (T) and modified RRI sequences (M10,M9,M8,…,M2). Mean values were then obtained for LSI and non-LSI patient groups. Decreasing values
of M denoted increasing percentages of a true RRI sequence affected by noise. Concatenation of selected RRIs was used to simulate missed beats and arrhythmias. (For
interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

N.T. Liu et al. / Computers in Biology and Medicine 43 (2013) 1955–1964 1959



simulated noise via decimation did not affect the shapes, trends,
and magnitudes of measures as much as increasing simulated
noise via concatenation and division for this record. The only
exception was for A(k, τ) in Figs. 4–6, where plots remained similar
in shape and magnitude. More apparent in Fig. 4 was the fact that
the increasing noise shifted certain features (peaks, valleys) for-
ward in time in Fig. 4. Based on results in Fig. 4, for a “lossy” data
channel represented by simulated noise via decimation, selected
metrics could still be reliable for monitoring trauma patients in
real time. If the magnitudes of SampEn, QSE, and MSE in
Figs. 5 and 6 could be scaled appropriately to compensate for
noise, perhaps, these measures could also be used for reliable
monitoring of the trauma patient. Given the noise models in this
study, A(k, τ) proved to be a viable metric for monitoring trauma
patients over time.

4. Conclusion

This study was the first to investigate the impact of noise on
the reliability of HRV and HRC metrics to discriminate between

different trauma patients and monitor individual trauma patients
over time. Using four different noise models and nine different
measures, HRV and HRC means were compared between patients
who received LSIs and patients who received none. In addition, for
one record, HRV and HRC values were compared and analyzed as a
function of time.

For the patient cohort in this study, all entropy and autocorre-
lation measures had power to discriminate between different
populations despite suboptimal RWD performance (approximately
92%). A further implication was that calculation of these metrics
could be useful for risk stratification and therefore, permit
early recognition of needs for LSIs in patients, when RWD
performances exceeded such sensitivities and positive predictive
values. Additional research will be required to investigate when
detection performances could hamper the ability of HRV and HRC
metrics to perform risk stratification and how varying detection
performances could affect the ability of metrics to monitor
patients over time.

Given the simulated noise models in this study, QSE and A(k, τ)
were overall reliable for discriminating between different populations.
SDRR, SDSD, MSE, and SampEn failed to discriminate properly in some

Fig. 3. Means of selected metrics for noise simulated via division. To address how noise could potentially affect the ability of measures to discriminate between LSI and non-
LSI trauma patients, noise was simulated by dividing RRIs of true RRI sequences at every ith multiple (Mi) for i¼10, 9, …, 2. Division of RRIs by two was only performed when
the resulting RRIs were each greater than 250 ms in order to ensure that newly created beats did not fall within a refractory period of 220 ms. Afterwards, metrics were
calculated for true RRI sequences (T) and modified RRI sequences (M10,M9,M8,…,M2). Mean values were then obtained for LSI and non-LSI patient groups. Decreasing values
of M denoted increasing percentages of a true RRI sequence affected by noise. Division of selected RRIs was used to simulate ectopic beats, motion artifacts, and arrhythmias.
(For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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Fig. 4. Selected metrics as a function of time for noise simulated via decimation. To address how simulated noise could potentially affect the ability of measures to monitor
trauma patients in real time, noise was simulated by decimating a true RRI sequence corresponding to one patient record at every ith multiple (Mi) for i¼10, 9, …, 2.
Afterwards, metrics were calculated for the true RRI sequence (T) and modified RRI sequences (M10, M9, M8, …, M2) and plotted as functions of time (RRIs in ms).

Fig. 5. Selected metrics as a function of time for noise simulated via concatenation. To address how simulated noise could potentially affect the ability of measures to
monitor trauma patients in real time, noise was simulated by concatenating adjacent RRIs of a true RRI sequence corresponding to one patient record at every ith multiple
(Mi) for i¼10, 9, …, 2. Afterwards, metrics were calculated for the true RRI sequence (T) and modified RRI sequences (M10, M9, M8, …, M2) and plotted as functions of time
(RRIs in ms).

N.T. Liu et al. / Computers in Biology and Medicine 43 (2013) 1955–1964 1961



situations. An increasing presence of false positives (motion artifacts,
ectopic beats, and arrhythmias) and false negatives (missed beats,
arrhythmias) demonstrated that HRV and HRC metrics could be
distorted as well as lose the ability to discriminate between patient
groups reliably. Most vulnerable to these noise effects were SDRR,
SDSD, MSE, and SampEn.

For one record in this study, A(k, τ) was reliable for monitoring
due to its ability to maintain its shape, magnitude, and character-
istics under the simulated noise models. If proper scaling was
applied to the entropy measures in order to compensate for noise
effects, it is possible that these metrics could be reliable for
monitoring also. Using a similar approach, additional research will
be needed to understand a general behavior of metrics for
monitoring a diverse set of patients in the presence of noise.

Although this study showed that the calculation of certain HRV
and HRC metrics may be less susceptible to simulated noise, and
therefore, may be integrated into a real-time software program for
decision support and triage in trauma patients, it had one major
limitation. Because the dataset contained a small sample size of
patients from a specific population, results could not be general-
ized for healthy versus unhealthy patients. Additional research
using a larger patient cohort that includes various diagnoses and
physiologic states will be required in order to gain a general
understanding of the impact of noise on the reliability of HRV and
HRC metrics for use in the clinical environment. A strategy similar
to this study could be applied. Development of a methodology and
explanations of noise effects will continue to be topics for future
research.
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Appendix A

A.1. Sample, quadratic sample, multiscale entropy

The sample entropy, SampEn(m, r), equals the negative natural
logarithm of the conditional probability that two epochs similar
for m RRIs remain similar at the next RRI, given a sequence of N

Fig. 6. Selected metrics as a function of time for noise simulated via division. To address how simulated noise could potentially affect the ability of measures to monitor
trauma patients in real time, noise was simulated by dividing RRIs of a true RRI sequence corresponding to one patient record at every ith multiple (Mi) for i¼10, 9, …, 2.
Division of RRIs by two was only performed when the resulting RRIs were each greater than 250 ms in order to ensure that newly created beats did not fall within a
refractory period of 220 ms. Afterwards, metrics were calculated for the true RRI sequence (T) and modified RRI sequences (M10, M9, M8, …, M2) and plotted as functions
of time (RRIs in ms).
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RRIs and excluding self-matches [24]. Here, similarity means that
RRIs differ by no more than some tolerance r, be it seconds or
milliseconds.

For clarity, sample entropy was computed by the following
equations:

SampEnðm; r;NÞ ¼ � lnðA=BÞ; ð1Þ

B¼ ½ðN�m�1Þ=2� ∑
N�m

i ¼ 1
Br
i ðmÞ; ð2Þ

A¼ ½ðN�m�1Þ=2� ∑
N�m

i ¼ 1
Ar
i ðmÞ: ð3Þ

In other words, for a sequence of N intervals, if xm(i) is an epoch
of m consecutive intervals starting at index i and running from
i¼1, …, N � m, then Bri(m) denotes the number of epochs xm(j)
within r of xm(i), for ia j, multiplied by (N � m � 1)–1, and Ar

i(m)
denotes the number of epochs xmþ1(j) within r of xmþ1(i), for ia j,
multiplied by (N � m � 1)–1 [24–26].

The quadratic sample entropy, QSE(m, r), equals SampEn(m, r)
normalized by 2r. Obtaining a coarse-grained RRI sequence from
the original sequence and calculating SampEn(m, r) produces the
multiscale entropy, MSE(m, r, s), where s denotes a scaling factor
used in the coarse-graining equation:

yj ¼
1
s

∑
js

i ¼ ðj�1Þsþ1
xi ; ð4Þ

8 integers j such that 1r jrN/s, xi denotes the ith RRI of the
original sequence, and yj denotes the jth RRI of the coarse-grained
sequence [25,26].

A.2. Poincaré variability ratio

The Poincaré plot takes an RRI sequence and plots each RRI
against the following RRI. A quantitative analysis of the plot's
geometry involves the calculation of two standard deviations, SD1
and SD2, respectively, describing the short-term and long-term RRI
variabilities of a sequence, as well as calculation of the variability
ratio SD1/SD2. Because SD1 and SD2 correspond to the minor and
major axes, respectively, of an ellipse fitted over the scatter plot,
they can be determined numerically by calculating the standard
deviations of distances from each point on the plot to the lines
RRIiþ1¼RRIi and RRIiþ1¼–RRIiþ2RRImean, respectively. Alterna-
tively, they can be obtained from the following equations:

SD12 ¼ var
1ffiffiffi
2

p RRIi�
1ffiffiffi
2

p RRIiþ1

� �
¼ 1
2
SDSD2; ð5Þ

and

SD22 ¼ 2SDRR2�1
2
SDSD2; ð6Þ

8 i¼1, …, N, where var( � ) denotes the variance function, SDRR
denotes the standard deviation of RRIs, SDSD denotes the standard
deviation of successive RRI differences, and N denotes the number
of RRIs in the sequence window [27].

A.3. Fractal scaling exponent

Detrended fluctuation analysis (DFA) quantifies the long-range
correlation of RRI sequences by estimating the fractal scaling
exponent α within a sequence [19–21]. The following steps are
used to perform DFA on an RRI sequence with N RRIs:

1. Integrate the RRI sequence to obtain y(k), where k denotes the
index of an RRI in the original sequence.

2. Divide y(k) into boxes of length n, for some box size n.

3. For each box, calculate a least squares line yn(k) best fitted to
y(k), the line itself representing the trend in that box.

4. Calculate the root-mean-square (RMS) fluctuation of the inte-
grated and detrended sequence using the equation

FðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

∑
N

k ¼ 1
½yðkÞ�ynðkÞ�2

s
: ð7Þ

5. Repeat steps 2–4 over all time scales (box sizes) in order to
characterize the relationship between log F(n) and log n.

6. Obtain the slope α of the line relating log F(n) and log n.

Here, the linear relationship between F(n) and n on a log–log
scale describes the degree of power law (fractal) scaling within y(k).
In other words, the scaling exponent α indicates the roughness of
the original RRI sequence. The larger the value of α, the smoother
the RRI sequence. According to this method, αE0.5 implies that a
sequence resembles white Gaussian noise (a totally random
sequence), while αE1.0 implies that the sequence resembles a
fractal-like time series. Analogously, αE1.5 implies that a sequence
resembles Brownian noise with decreasing power in its high
frequency components [19–21].

In addition, suitable values of n for estimating the scaling exponent
α include 4rnrN/4 uniformly distributed over log n. Another form of
analysis is to estimate a short-term scaling exponent α1 for 4rnr16
and a long-term scaling exponent α2 for 16rnr64. Although these
techniques make DFA more applicable to both large and relatively
short data sets, in general, larger data lengths and the editing of
ectopic beats will improve data analysis [19–21].

A.4. Autocorrelation coefficient

The autocorrelation coefficient utilizes the histogram. Given a
defined RRI window, this coefficient calculates the overlap of the
histograms for two consecutive RRI windows according to the
equation

Aðk; τÞ ¼ ∑
Nbins

bin ¼ 1
½pbinðkÞ pbinðkþτÞ� ; ð8Þ

where k denotes the starting index of an RRI in the original
windowed sequence, τ denotes a shift from the starting index,
pbin(k) denotes the probability that an RRI falls into the designated
bin of the histogram probability distribution, and Nbins denotes the
number of bins in the histogram. Since the coefficient A(k, τ),
sometimes referred to as the similarity of distributions (SOD),
measures a probability, it falls into the range of [0, 1]. In particular,
it tends toward 0 if the RRI histograms have non-zero values
dispersed across all bins, and it tends towards 1 if the histograms
have similar peaks. Hence, the SOD measures the predictability
and stability of the heart's dynamics at a specific time [22].

A.5. Degree of non-stationarity

The index StatAv measures the degree of non-stationarity
within an RRI sequence. Formally, StatAv breaks up a given RRI
window into 40 epochs, computes the sample mean of each epoch,
and then calculates the ratio between the standard deviation of
the 40 means and the SDRR. Given N RRIs in an RRI window, this
can be expressed mathematically as follows:

StatAv¼ SDAV=SDRR ; ð9Þ
where SDAV denotes the standard deviation ofM1,M2,…,M40 andMk

denotes the sample mean of an epoch formed inclusively from RRIi
between i¼N � (k � 1)/40þ1 and N � k/40, 8 k¼1, …, 40. Based upon
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this definition, smaller StatAv values imply more stationarity. Thus,
StatAv quantifies the tendency of the mean to vary with time [23].
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